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We consider scanning tunneling microscopy �STM� using doped one-dimensional semiconducting tips. We
show that these systems could be effective for high resolution energy-filtered STM, allowing one to probe the
spectral function of surface states directly from the tunneling current. These systems would also allow for
energy-resolved maps of surface states �with high energy resolution� using only constant-current imaging. A
promising place to realize these effects is in doped semiconducting carbon nanotubes.
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I. INTRODUCTION

Scanning tunneling microscopy �STM� has become a key
technique for materials characterization; it has found utility
in a variety of disciplines such as physics, chemistry, mate-
rial science, and even biology.1,2 More recently, STM has
become instrumental for imaging and obtaining spectro-
scopic information at the atomic scale.3 This technique has
found utility in such diverse areas because it allows one to
obtain three-dimensional, real space images; unlike other
techniques, STM allows for good spatial resolution under
conditions which do not destroy the sample being studied.1

In STM, electrons are made to tunnel from a “probe tip”
into a sample under investigation; the tunneling current gives
information about the surface of the sample. Since its
invention,4 a sharpened metal wire has typically been used as
the probe tip. The use of a metal tip, however, limits the
control one has over the states which contribute to the tun-
neling current.1 Recently, it has been suggested that semicon-
ducting �SC� probe tips could be very effective in STM—
they would allow for energy-filtered imaging, where the
tunneling current is determined only by states within a nar-
row energy interval.5 This offers the exciting possibility of
energy-resolved maps of sample states in constant-current
mode �as compared to a metal tip which requires derivative
spectroscopy for energy-resolved information1,2,6�.

In this work, we consider doped one-dimensional �1D�
semiconductors as STM tips. In one dimension, there is a
singularity in the density of states �DOS� at the top and/or
bottom of the valence and/or conduction band. In Ref. 7, it
was shown that this singularity in the DOS could substan-
tially influence the tunneling current. Here, we show that the
interplay of band edge physics and the singularity in the
DOS can be effective for energy-filtered STM and, in par-
ticular, could allow for high energy resolution. A promising
place to realize these effects is in doped SC carbon
nanotubes.8 Indeed, recent work has demonstrated the utility
of carbon nanotubes as STM tips—atomic resolution of a
Si�111�-7�7 surface was achieved, with a measured tunnel-
ing current of approximately 0.5 nA.9

The rest of this paper is organized as follows. In Sec. II,
we describe the STM setup and the systems considered. In
Sec. III, we present our results for the tunneling current; we
discuss the energy filtered STM from 1D and three-

dimensional �3D� SC tips. In Sec. IV, we present a discussion
of our results and some concluding remarks. Calculations of
the spectral functions for the systems considered are outlined
in the Appendix.

II. SYSTEM AND TUNNELING CURRENT

The energetics of our setup is shown in Fig. 1�a�—a scan-
ning tunneling microscope with a doped SC tip is in contact
with a sample which one is interested in probing. The semi-
conductor has an energy gap 2� between the valence and
conduction bands; the valence band is filled with holes to an
energy �. A voltage V is applied to the STM tip, shifting its
spectrum relative to the sample. As discussed above, we will
be interested in the case where the STM tip is a 1D semi-
conductor. Assuming the dopant atoms to be uniformly dis-
tributed �such that its band structure is not affected�, we take
the DOS of the 1D semiconductor to be

D��� =
D1

2�
Re� �� − � − ��

��� − � − ��2 − �2� . �1�

The effects of the dopant atoms �impurities� are incorporated
into a self-energy in the electron’s spectral function—we as-
sume a spectral function of the form
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FIG. 1. �a� Setup: a scanning tunneling microscope with a doped
SC tip �shown as parabolas� is in contact with a metal sample. The
semiconductor has an energy gap 2�; the valence band is filled with
holes to an energy �. �The dark shaded regions represent energy
states filled with electrons.� A voltage V is applied to the STM tip,
shifting its spectrum relative to the metal sample. �b� Top and bot-
tom panel: shown in a solid line is the spectral function of 1D and
3D semiconductors. The dark shaded regions represent the energies
of the valence band filled with electrons.
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A��,�� =
2	

�� − ��2 + 	2 , �2�

where 	 is the scattering rate due to the impurities; for sim-
plicity, we take 	 to be constant. Physically, larger values of
	 describe more disordered materials. In what follows, we
take 	=0.01�. For comparison, we will also consider the
case where the STM tip is a hole-doped 3D semiconductor.
Here, we take the DOS to be

D��� = D3 Re��� − �� , �3�

we assume the electrons’ spectral function to be given by Eq.
�2�. To simplify things a bit, we ignore the electrons’ spin.
This does not change our conclusions �which are determined
by the electrons’ DOS�, but it simplifies some of the formu-
las.

An object which plays an important role is the STM’s
�local� spectral function ASTM���, which is obtained by con-
volving the DOS with the electrons’ spectral function,

ASTM��� =	 d�D���A��,�� . �4�

Performing the integral in Eq. �4� with D��� given by Eq. �1�
and A�� ,�� in Eq. �2�, we obtain

ASTM��� =
D1

�2

�
��1 + cos � + 	�1 − cos �

��
2 − �2 − 	2�2 + 4	2
2�1/4 , �5�

where

cos � =
�
2 − �2 − 	2�

��
2 − �2 − 	2�2 + 4	2
2
,

with 
=�−�−�. For the 3D SC tip, we perform the inte-
gral in Eq. �4� with D��� given by Eq. �3� and A�� ,�� in Eq.
�2�, we obtain

ASTM��� = ��2D3���� − ��2 + 	2 + � − ��1/2. �6�

ASTM��� for the 1D and 3D SC tips are shown in Fig. 1�b�.
Notice that ASTM��� for the 1D semiconductor has a singu-
larity at the top of the valence band; ASTM��� for the 3D
semiconductor, on the other hand, goes to zero at the top of
the valence band. As will be discussed below, this difference
plays an important role in the energy resolution that can be
achieved.

To discuss the physics of energy-filtered STM and to il-
lustrate the effectiveness of doped 1D semiconductors as
STM tips, we consider the tunneling current for two systems.
We first consider a “diatomic molecule” attached to a sur-
face. To describe this system, we consider the Hamiltonian

H = 

p

�pcp
†cp + 


i=1,2
�idi

†di + V0�d1
†d2 + d2

†d1�

+ 

p,i=1,2

Vp,i�e−ip·ricp
†di + di

†cpeip·ri� . �7�

In Eq. �7�, cp destroys an electron of momentum p in the
metal, di destroys an electron in atom i’s orbital with energy
�i �which is closest to the Fermi energy� and centered about

ri, V0 describes the hybridization between the orbitals on the
two atoms, and Vp,i is the coupling between the orbital on
atom i and the state with momentum p in the metal. For
simplicity, in what follows, we take Vp,1=Vp,2=V1 /�Vol,
where V1=constant and Vol is the volume of the metal. With
this form for the �Vp,i�, electronic resonances have a Breit-
Wigner line shape.6

We also consider probing the vibrational spectra of an
atom or molecule attached to a surface. This phenomena has
attracted considerable attention, initiated by the work of Ref.
10. It is also relevant to the area of molecular electronics,11

where the influence of vibrational modes have been observed
in the current through molecular junctions.12 To describe this
system, we consider the Hamiltonian13

H = 

p

�pcp
†cp + �0d†d +

1

2m
p2 +

m
2

2
x2

+ 

p

Vp�cp
†d + d†cp� + gxd†d . �8�

In Eq. �8�, cp destroys an electron of momentum p in the
metal, d destroys an electron on the atom’s and/or molecule’s
orbital with energy �0, which is closest to the Fermi energy,
Vp is the coupling between the atom and/or molecule and the
state with momentum p in the metal, x �p� is the position
�momentum� operator of the vibrational mode, 
 is the fre-
quency of the vibrational mode, and g is the coupling be-
tween the vibrational mode and the electrons on the atom
and/or molecule. Similar to Eq. �7�, we take, for simplicity,
Vp=V1 /�Vol.

The tunneling current between the STM tip and an atom
and/or molecule on the surface is1,2

I = e	 d�

2�
ASTM�� + eV�Af���T��,eV��nF�� + eV� − nF���� ,

�9�

where nF��� is the Fermi function and ASTM��� and Af���
are the spectral functions for the STM tip and the atom
and/or molecule, respectively—ASTM��� is given by Eq. �5�
for the 1D SC tip and Eq. �6� for the 3D SC tip; Af���
=−2 Im�Gf����, where

Gf�t� = − i��t��f�t�, f†�0��� �10�

is the atom’s and/or molecule’s retarded Green’s function,
with ��t� being the step function and �·,·� denoting the anti-
commutator. �Gf��� for the diatomic molecule and for the
vibrational modes of an atom and/or molecule are computed
in the Appendix.� Furthermore, T�� ,eV� is the tunneling
transmission probability for electrons of energy � at an ap-
plied bias voltage V. In what follows, we will be interested in
small bias voltages. Hence, following other works, we take
T�� ,eV�=const �within the energy regime we are
considering�.1,2,6
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III. RESULTS: HIGH RESOLUTION ENERGY-FILTERED
STM

In this section, we discuss the tunneling current for the
systems we are interested in probing Eqs. �7� and �8�. Fur-
thermore, we discuss in detail the energy filtered STM aris-
ing from 1D and 3D SC STM tips. In particular, we discuss
the “mechanism” behind energy filtered STM; we discuss the
factors which limit the resolution that can be achieved.

A. Tunneling current from a diatomic molecule

We begin by considering the diatomic molecule �Eq. �7��.
In what follows, we consider tunneling into the orbital on
atom 2—f =d2 in Eqs. �9� and �10�; Gd2

��� is found to be

�Gd2
����−1 = � − �2 + i −

�V0 − eikFr/kFr�2

� − �1 + i
. �11�

with kF being the Fermi wave vector, r= �r2−r1�, and 
=�V1

2D0 �D0 is the DOS of the metal� �see the Appendix for
details�. Figure 2 shows the tunneling current for the di-
atomic molecule—Figs. 2�a� and 2�b� are the current from a
3D and 1D SC tips. The values of the parameters were taken
to be �1=−0.1�, �2=−0.2�, V0=0.1�, kFr=0.05�2��, and
=0.05�. The two peaks appearing in the current are due to
the two orbitals �with energies �1 and �2� which are coupled
together by V0. For comparison, the atom’s spectral function
Ad2

��� is shown in a dash-dotted line �in units of the cur-
rent�. Notice how the current resembles the spectral function
for smaller values of �. While energy-resolved information
can be obtained using derivative spectroscopy with a metal
tip,1,2,6 the SC tip allows one to do so directly from the
current. This is due to the energy-filtering arising from the
SC tip.

The physics behind energy-filtered imaging is shown in
Fig. 3. Consider two energy levels �1 and �2. In Fig. 3�a�, �1
contributes to the current, while �2 does not. By increasing
the bias voltage, we obtain the situation shown in Fig. 3�b�—
now �2 contributes to the current; �1 does not, as the bias
voltage has raised this energy level into the band gap. How-
ever, considering Fig. 2 further, we see that if � becomes too
large, the current does not resolve the two peaks in the at-
om’s spectral function. The loss of resolution occurs when
the spacing between peaks is approximately equal to �.
Hence, a SC STM tip cannot resolve structures in energy that
are smaller than �.

For the 3D SC tip, the tunneling current arising for a
particular value of � is actually somewhat delicate. As de-
scribed in the previous paragraph, if � is too large, one loses
energy resolution. However, Fig. 2 shows that if � is too
small, one loses energy resolution as well. This is because
the DOS goes to zero at the top of the valence band in a 3D
semiconductor �see Fig. 1�b��; if � is too small, there are not
enough states to produce a current. Hence, for the 3D SC tip,
there is a delicate interplay—one needs � large enough to
produce a large enough current, but � must also be small
enough so that one has an effective energy filter. From Fig. 2,
we see that this does not occur with the 1D SC tip; indeed,
smaller values of � give better energy resolution. This is due
to the singularity in the DOS at the top of the valence band in
a 1D semiconductor �see Fig. 1�b��. The insets of Fig. 2 show
the tunneling current for several temperatures. We see that
one loses resolution as the temperature is increased. How-
ever, the loss of resolution is faster for the 3D SC tip com-
pared to the 1D SC tip.

B. Tunneling current from vibrational modes

Now, we consider the tunneling current arising from the
vibrations of an atom attached to a metal surface �Eq. �8��. In
Eqs. �9� and �10�, f =d; Gd��� is found to be

Gd��� = 

n,n�



m,m�

fn,n�f
m,m�
* Gnn�,m�m��� , �12�
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FIG. 2. I-V characteristics for the diatomic molecule. Param-
eters: �1=−0.1�, �2=−0.2�, V0=0.1�, kFr=0.05�2��, and 
=0.05�. �a� Current �in units of et2D3�3/2� vs bias voltage �in units
of �� for a 3D SC tip for several values of � with T=0.01�. �b�
Current �in units of et1

2D1�2��� vs bias voltage �in units of �� for a
1D SC tip for several values of � with T=0.05�. Insets: current for
several temperatures �with �=0.01��. For comparison, Ad2

��� is
shown in a dash-dotted line in units of the current and scaled by a
factor—Ad2

��� is in units of et1
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FIG. 3. Schematic illustrating energy-filtered STM. �a� The en-
ergy level �1 contributes to the current; �2 does not. �b� For this bias
voltage, �2 contributes to the current; �1 energy does not, as it lies
in the band gap.
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Gnn�,m�m��� =
�m,n�m�,n���1 − n̄�Nn + n̄Nn��

� − �0 + 
�n − n�� − �n,n����
�13�

�see the Appendix for details�. Figures 4 and 5 show the
tunneling current arising from the vibrations of an atom or
molecule. Figure 4 considers the case of strong hybridization
between the atom and/or molecule and the surface, and weak

coupling to the vibrational mode—the values of the param-
eters are �̃0=−0.25�, 
=0.2�, =0.25�, and �=0.5. Such a
value of 
 is relevant to the stretch modes of C2H2 �Ref. 10�
and CO �Ref. 14� observed by STM via derivative spectros-
copy. We see that the current has two peaks—the main peak
is due to elastic tunneling and the secondary peak is due to
the absorption of a phonon during tunneling. Figure 4�a�
shows the current for several values of �. As before, smaller
values of � give better energy resolution for the 1D SC tip;
the current depends somewhat delicately on � for the 3D SC
tip—one loses energy resolution if � is too large or too
small. The six panels in Fig. 4�b� show the current for vari-
ous temperatures. The atom’s spectral function Ad��� is
shown with a thin gray line for comparison �in units of the
current�. At the lowest temperature, the current from the 1D
SC tip resolves the structure in the atom’s spectral function
rather accurately for forward bias; it is able to resolve the
structure even at higher temperatures. The 3D tip, on the
other hand, loses its ability to resolve the structure in the
atom’s spectral function as the temperature is raised.

Figure 5 shows the tunneling current for the case of weak
hybridization between the atom and/or molecule and the sur-
face, and strong coupling to the vibrational mode—the val-
ues of the parameters are �̃0=−0.05�, =0.05�, 
=0.05�,
and �=2.0. Such a value of 
 is relevant to the hindered
rotational mode of CO on Cu observed in Ref. 14. Since 
 is
small, only small values of � will allow for the structure in
the atom’s spectral function, which are due to the absorption
of phonons during tunneling, to be resolved. The six panels
in Fig. 5�b� show the current for various temperatures; as in
Fig. 4, the atom’s spectral function Ad��� is shown with a
thin gray line for comparison. At the lowest temperature, the
1D SC tip resolves most of the structure arising from the
phonon mode. Most of the features arising from the vibra-
tional mode are missed with the 3D SC tip. Even at higher
temperatures, the current from the 1D SC tip captures the
general features of the atom’s spectral function.

IV. CONCLUDING REMARKS

In this work, we analyzed models describing an atom or
molecule on a metallic surface probed by a SC STM tip; we
presented results for the tunneling current from a doped 1D
SC STM tip, comparing the results with a doped 3D SC
STM tip. A few words are in order about the parameters
appearing in our models and calculations. Our models de-
scribe the salient features of the systems considered at the
energy scales of interest. The parameters in Eqs. �7� �the
diatomic molecule� and �8� �the vibrational modes of an
atom and/or molecule� were chosen to give realistic and il-
lustrative spectral functions. We were particularly interested
in elucidating the factors which influence the achievable en-
ergy resolution �see the discussion in Sec. III A�. The STM’s
spectral function, however, deserves further comments.
Equation �1� is expected to well describe the DOS of a 1D
semiconductor. The STM’s spectral function, obtained by
convolving Eqs. �1� and �2�, captures the salient features
where the singularity in the DOS is smoothed by disorder. In
our calculations, this smoothing of the singularity was pa-
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rameterized by 	, the �phenomenological� electron scattering
rate in Eq. �2�. Our models elucidate the behaviors that can
arise once 	 is given or, more physically, once the STM’s
spectral function is specified. Ab initio calculations would be
desirable to determine the spectral functions for particular
materials; such calculations could help determine the mate-
rials which would be best suited for use in STM.

To summarize, we considered scanning tunneling micros-
copy with a doped 1D semiconducting tip. The interplay of
band edge physics and the singularity in the density of states
allows for energy-filtered STM with high resolution. As
mentioned above, while energy-resolved information can be
obtained via derivative spectroscopy with a metal STM tip,
the 1D semiconducting tip allows one to do so directly from
the current. Furthermore, it allows for energy-resolved maps
of surface states �with high energy resolution� using only
constant-current imaging. A promising place to realize these
effects is in doped semiconducting carbon nanotubes.
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APPENDIX A: SPECTRAL FUNCTIONS

Here, we outline the calculations for the spectral functions
appearing in the expression for the tunneling current �Eq.
�9��—Ad2

��� for the diatomic molecule and Ad��� for the
vibrational modes of an atom and/or molecule.

1. Diatomic molecule

In Sec. III A, we consider tunneling into atom 2; hence,
we need the Green’s function �Eq. �10�� with f =d2. A
straightforward calculation gives the Fourier transform of
Eq. �10� as �Gd2

����−1=�−�2−����, where the self-energy
is given by

���� = �2��� +
�V0 − �1,2����2

� − �1 − �1���
, �A1�

with

�i��� = 

p

�Vp,i�2

� − �p + i0+ �i = 1,2� ,

�1,2��� = 

p

Vp,1Vp,2eip·�r1−r2�

� − �p + i0+ .

Using that Vp,i=V1 /�Vol and treating the metal in the wide-
band limit, �i��� and �1,2��� are easily computed; we obtain

�Gd2
����−1 = � − �2 + i −

�V0 − eikFr/kFr�2

� − �1 + i
, �A2�

where kF is the Fermi wave vector, r= �r2−r1�, and 
=�V1

2D0 �D0 is the DOS of the metal�.

2. Vibrational modes of an atom and/or molecule

As before, we need the Green’s function Gf���, where f
=d. To proceed, we introduce the unitary operator U
=exp�i�pd†d�, where �=g /m
2. Transforming the Hamil-

tonian �Eq. �8��, H̃=U†HU, we obtain

H̃ = 

p

�pcp
†cp + �̃0d†d +

1

2m
p2 +

m
2

2
x2

+ 

p

Vp�ei�pcp
†d + e−i�pd†cp� , �A3�

where �̃0=�0−g2 /2m
2. Then, performing the unitary trans-
formation on the Green’s function Gd��� �Eq. �10�� and ex-
panding the result in terms of oscillator energy eigenstates,15

we can write

Gd�t� = 

n,n�



m,m�

fn,n�f
m,m�
* Gnn�,m�m�t� , �A4�

where

Gnn�,m�m�t� = − i��t���d�n�n����t�,d†�m��m����H̃,

�A5�

and fn,n�= n�ei�p�n��. � �H̃ reminds us that time evolution and

matrix elements are computed with respect to H̃.� Explicitly,

fn,n� =�min�n,n��!
max�n,n��!

e−�2/2�i���n−n��Lmin�n,n��
�n−n�� ��2� ,

where �=g / �
�2m
� and Lq
k�z� is a Laguerre polynomial.16

Hence, our problem is to compute the Green’s function�s�
Gnn�,m�m�t�. To do so, we employ an equations-of-motion ap-
proach. Here, we outline the key steps in the calculation;
further details can be found in Ref. 15.

Differentiating Eq. �A5� with respect to time, we obtain

i�tGnn�,m�m�t� = ��t��dd†�n�m���n�,m� + d†d�m��n����n,m�

+ ��̃0 − 
�n − n���Gnn�,m�m�t��19�

+ 

p,l

Vp�f
l,n�
* Fnl,m�m

p �t� − f
n,l
* Aln�,m�m

p �t�

+ f
l,n�
* Anl,m�m

p �t�� , �A6�

where Fnn�,m�m
k �t�=−i��t���ck�n�n����t� ,d†�m��m����H̃ and

Ann�,m�m
k �t�=−i��t���d†ckd�n�n����t� ,d†�m��m����H̃. We

then derive the equations of motion for Fnn�,m�m
k �t� and

Ann�,m�m
k �t�; by ignoring correlations with the metal surface,15

we obtain a closed set of equations for Gnn�,m�m�t�,
Fnn�,m�m

k �t�, and Ann�,m�m
k �t�. Fourier transforming, one finds

Gnn�,m�m��� and satisfies
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�� − �̃0 + 
�n − n���Gnn�,m�m���

= dd†�n�m��n�,m� + d†d�m��n���m,n�

+ 

i,j

��i,n�
e f

n,i
* f j,iGjn�,mm����

+ �n,i
h f

i,n�
* f i,jGnj,mm����� , �A7�

where

�nn�
e ��� =



�
	 d�

f���
� − � + 
�n − n�� + i0+ ,

and �nn�
h ���= i−�nn�

e ���, with =�V1
2D0 �D0 is the DOS

of the metal�. To make further progress, we approximate Eq.
�A7� by setting j=n �j=n�� in the first �second� term in the
sum. This is justified because the first �second� term in the
sum is dominated by Ejn��Enn� �Enj �Enn��. Furthermore,
we take

dd†�n�m��n�,m� + d†d�m��n���m,n�

� �n,m�n�,m���1 − n̄�Nn + n̄Nn�� ,

where n̄= d†d� and Nn= �n�n��. These approximations were
shown to give very accurate results, compared to the case
where the full sum was kept and the expectation values were
determined self-consistently.15 Hence, to good approxima-
tion, we obtain

Gnn�,m�m��� =
�m,n�m�,n���1 − n̄�Nn + n̄Nn��

� − �̃0 + 
�n − n�� − �n,n����
, �A8�

where the self-energy �n,n���� is given by

�n,n���� = − i −


�



l

�fn,l�2��zl,n�� − �f l,n��
2��zn,l� ,

�A9�

with ��zl,l�� being the digamma function16 and

zl,l� =
1

2
−

i

2�T
�� + 
�l − l��� .
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